96 research outputs found

    End-to-end learning of brain tissue segmentation from imperfect labeling

    Full text link
    Segmenting a structural magnetic resonance imaging (MRI) scan is an important pre-processing step for analytic procedures and subsequent inferences about longitudinal tissue changes. Manual segmentation defines the current gold standard in quality but is prohibitively expensive. Automatic approaches are computationally intensive, incredibly slow at scale, and error prone due to usually involving many potentially faulty intermediate steps. In order to streamline the segmentation, we introduce a deep learning model that is based on volumetric dilated convolutions, subsequently reducing both processing time and errors. Compared to its competitors, the model has a reduced set of parameters and thus is easier to train and much faster to execute. The contrast in performance between the dilated network and its competitors becomes obvious when both are tested on a large dataset of unprocessed human brain volumes. The dilated network consistently outperforms not only another state-of-the-art deep learning approach, the up convolutional network, but also the ground truth on which it was trained. Not only can the incredible speed of our model make large scale analyses much easier but we also believe it has great potential in a clinical setting where, with little to no substantial delay, a patient and provider can go over test results.Comment: Published as a conference paper at IJCNN 2017 Preprint versio

    MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    Get PDF
    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources

    Brainchop: Next Generation Web-Based Neuroimaging Application

    Full text link
    Performing volumetric image processing directly within the browser, particularly with medical data, presents unprecedented challenges compared to conventional backend tools. These challenges arise from limitations inherent in browser environments, such as constrained computational resources and the availability of frontend machine learning libraries. Consequently, there is a shortage of neuroimaging frontend tools capable of providing comprehensive end-to-end solutions for whole brain preprocessing and segmentation while preserving end-user data privacy and residency. In light of this context, we introduce Brainchop (http://www.brainchop.org) as a groundbreaking in-browser neuroimaging tool that enables volumetric analysis of structural MRI using pre-trained full-brain deep learning models, all without requiring technical expertise or intricate setup procedures. Beyond its commitment to data privacy, this frontend tool offers multiple features, including scalability, low latency, user-friendly operation, cross-platform compatibility, and enhanced accessibility. This paper outlines the processing pipeline of Brainchop and evaluates the performance of models across various software and hardware configurations. The results demonstrate the practicality of client-side processing for volumetric data, owing to the robust MeshNet architecture, even within the resource-constrained environment of web browsers
    • …
    corecore